# Crystalline silicon ndtset 1 # Definition of the unit cell: fcc acell 3*10.217 # This is equivalent to 10.217 10.217 10.217 rprim 0.0 0.5 0.5 # FCC primitive vectors (to be scaled by acell) 0.5 0.0 0.5 0.5 0.5 0.0 # Definition of the atom types ntypat 1 # There is only one type of atom znucl 14 # The keyword "zatnum" refers to the atomic number of the # possible type(s) of atom. The pseudopotential(s) # mentioned in the "files" file must correspond # to the type(s) of atom. Here, the only type is Silicon. # Definition of the atoms natom 2 # There are two atoms typat 1 1 # They both are of type 1, that is, Silicon. xred # Reduced coordinate of atoms 0.0 0.0 0.0 0.25 0.25 0.25 # Definition of the planewave basis set (at convergence 16 Rydberg 8 Hartree) ecut 6 # Maximal kinetic energy cut-off, in Hartree ecutwfn 6 ecuteps 2.1 istwfk *1 nstep 50 # Maximal number of SCF cycles diemac 12.0 # Dataset1: self-consistent calculation # Definition of the k-point grid kptopt 1 # Option for the automatic generation of k points, ngkpt 2 2 2 nshiftk 1 shiftk 0.11 0.12 0.13 # These shifts will be the same for all grids chksymbreak 0 optdriver 99 irdwfk 1 getwfkfine 99 inclvkb 2 bs_algorithm 2 # Haydock bs_haydock_niter 200 # No. of iterations for Haydock bs_exchange_term 1 bs_coulomb_term 21 # Use model W and full W_GG. mdf_epsinf 12.0 bs_calctype 1 # Use KS energies and orbitals to construct L0 mbpt_sciss 0.8 eV bs_coupling 0 bs_haydock_tol -0.001 0 bs_loband 2 nband 8 bs_freq_mesh 0 6 0.1 eV bs_hayd_term 0 # No terminator irdbsreso 1 # Interpolation bs_interp_method 0 bs_interp_mode 1 bs_interp_kmult 2 2 2 pp_dirpath "$ABI_PSPDIR" pseudos "PseudosTM_pwteter/14si.pspnc" #%% #%% [setup] #%% executable = abinit #%% test_chain = t31.abi, t32.abi, t33.abi, t34.abi, t35.abi #%% [files] #%% files_to_test = #%% t32.abo, tolnlines = 20 , tolabs = 1.1e-2, tolrel = 4.0e-2, fld_options = -ridiculous; #%% t32o_DS1_EXC_MDF , tolnlines = 800, tolabs = 1.1e-2, tolrel = 4.0e-2, fld_options = -ridiculous; #%% t32o_DS1_GW_NLF_MDF , tolnlines = 800, tolabs = 1.1e-2, tolrel = 4.0e-2, fld_options = -ridiculous; #%% t32o_DS1_RPA_NLF_MDF, tolnlines = 800, tolabs = 1.1e-2, tolrel = 4.0e-2, fld_options = -ridiculous; #%% [paral_info] #%% max_nprocs = 1 #%% [extra_info] #%% authors = Y. Gillet #%% keywords = NC, GW, BSE #%% description = #%% Silicon: Solution of the Bethe-Salpeter equation (BSE) with the interpolation technique #%% In t31, preparation, BSE equation with Model dielectric function and Haydock (only resonant + W + v), then full BSE #%% In t32, bs_interp_mode 1 #%% In t33, bs_interp_mode 2 #%% In t34, bs_interp_mode 3 #%% In t35, Rohlfing-Louie #%% topics = BSE #%%