#test silicon linear chain and finite oscillating electric field #More symmetric geometry than in previous case. ndtset 5 getwfk1 0 nstep1 30 qprtrb2 0 0 1 vprtrb2 10.0 0.0 qprtrb3 0 0 1 vprtrb3 0.0 10.0 qprtrb4 0 0 1 vprtrb4 0.0 -10.0 qprtrb5 0 0 2 vprtrb5 10.0 0.0 #Common data acell 2*10.00 50.00 diecut 1.20 dielam 0.5 diegap 0.2 ecut 2.00 getwfk 1 iprcel 45 ixc 3 kptopt 0 kpt 0.00000 0.00000 0.000 0.00000 0.00000 0.250 0.00000 0.00000 0.500 0.00000 0.00000 0.750 natom 8 nband 16 ngfft 2*16 64 nkpt 4 nstep 10 nsym 1 ntypat 1 occopt 1 rprim 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 symrel 1 0 0 0 1 0 0 0 1 xred 0.0 0.0 -0.025 0.0 0.0 0.025 0.0 0.0 0.225 0.0 0.0 0.275 0.0 0.0 0.475 0.0 0.0 0.525 0.0 0.0 0.725 0.0 0.0 0.775 tnons 3*0.0 typat 8*1 tolwfr 1.e-22 wtk 4*1 znucl 14 pp_dirpath "$ABI_PSPDIR" pseudos "14si.Hamann_mod" #%% #%% [setup] #%% executable = abinit #%% [files] #%% files_to_test = #%% t02.abo, tolnlines = 1, tolabs = 3.0e-10, tolrel = 2.0e-2 #%% [paral_info] #%% max_nprocs = 4 #%% [extra_info] #%% authors = X. Gonze #%% keywords = #%% description = #%% Chain of Silicon diatomic molecules (4 Si2 molecules in the cell) #%% Freeze oscillatory perturbations with different wavelengths and intensities, #%% thanks to the qprtrb and vprtrb input variables. #%% Compute the dielectric constant. Similar to test v6#01, #%% but uses a more symmetric geometry, to examine invariance #%% of the response with respect to shifts of potential, and also #%% a shorter wavelength. I do not understand why vprtrb 0 10.0 leads to no response. #%% Such a sine wave should cause similar response as for the cosine wave. #%% No time presently to investigate this problem (XG090909) #%%