# Input for Positron tutorial # Fourth step of the tutorial on electron-positron annihilation # Positron lifetime calculation within PAW # Si monovacancy, relaxation effect #To perform a self-consistent electron-positron calculation, we need only one dataset #------------------------------------------------------------------------------- #Definition of variables specific to electron-positron calculation #TC-DFT Self-consistent cycle positron -10 # We perform automatic calculation of electrons and positron densities # in the two-component DFT context (storing wavefunctions in memory) posnstep 20 # Maximum number of electon and positron steps postoldfe 1d-5 # We will repeat the electon and positron steps # until the energy difference is lower than 1d-5 ixcpositron 1 # We are using the Boronski and Nieminen parametrization posocc 1.0 # Occupation number for the positron # (we have only one positron in the cell) #------------------------------------------------------------------------------- #Definition of variables specific to atomic relaxation ionmov 2 # We now include the effect of the atomic relaxation # (BFGS relaxation algorithm) ntime 4 # We will perform only 4 steps of relaxation # in reality more steps are required optforces 1 # Forces computation done at each (electronic or positronic) SCF step #------------------------------------------------------------------------------- #Definition of the unit cell acell 3*5.43 angstrom # Lengths of the primitive vectors (exp. param. in angstrom) rprim # 3 orthogonal primitive vectors (FCC lattice, non primitive cell) 0.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0 chkprim 0 # Do not stop if cell is not primitive #Definition of the atom types and pseudopotentials ntypat 1 # There is only one type of atom znucl 14 # Atomic number of the possible type(s) of atom. Here silicon. pp_dirpath "$ABI_PSPDIR" # Path to the directory were # pseudopotentials for tests are stored pseudos "Pseudodojo_paw_pw_standard/Si.xml" # Name and location of the pseudopotential #Definition of the atoms natom 15 # There are 15 atoms typat 15*1 # They all are of type 1, that is, Silicon xred # Location of the 15 atoms (one triplet per atom): 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.0 0.0 0.5 0.5 0.5 0.0 0.5 0.5 0.5 0.0 0.5 0.5 0.5 0.125 0.125 0.125 0.125 0.125 0.625 0.125 0.625 0.125 0.625 0.125 0.125 0.125 0.625 0.625 0.625 0.125 0.625 0.625 0.625 0.125 # 0.625 0.625 0.625 # We remove one Si atom #Definition of bands and occupation numbers nband 36 # Compute 36 bands occopt 1 # Automatic generation of occupation numbers, as a semiconductor #Numerical parameters of the calculation : planewave basis set and k point grid ecut 8. # Maximal plane-wave kinetic energy cut-off, in Hartree pawecutdg 15. # Max. plane-wave kinetic energy cut-off, in Ha, for the PAW double grid kptopt 1 # Automatic generation of k points, taking into account the symmetry ngkpt 2 2 2 # This is a 2 2 2 grid based on the primitive vectors of the recip. space nshiftk 1 # We do not shift the grid in order to have Gamma point in it shiftk 0. 0. 0. #Parameters for the SCF procedure nstep 500 # Maximal number of SCF cycles. We increase it! toldfe 1.0d-8 # Will stop when, twice in a row, the difference # between two consecutive evaluations of energy # differ by less than toldfe #Miscelaneous parameters prtwf 0 # Do not print wavefunctions prtden 0 # Do not print density (electronic and/or positronic) prteig 0 # Do not print eigenvalues optstress 0 # Stress tensor computation is not relevant here ############################################################## # This section is used only for regression testing of ABINIT # ############################################################## #%% #%% [setup] #%% executable = abinit #%% [files] #%% files_to_test = #%% tpositron_4.abo, tolnlines= 48, tolabs= 3.0e-2, tolrel= 8.0e-1, fld_options= -easy #%% [paral_info] #%% max_nprocs = 10 #%% [extra_info] #%% authors = J. Wiktor #%% keywords = POSITRON,PAW #%% description = #%% Input for Positron tutorial #%% Fourth step of the tutorial on electron-positron annihilation #%% Positron lifetime calculation within PAW #%% Si monovacancy, relaxation effect #%%