# Crystalline aluminum : computation of the total energy # # Convergence with respect to k points ndtset 12 udtset 3 4 getwfk -1 #Definition of the unit cell acell 3*7.60 # This is equivalent to 7.60 7.60 7.60 rprim 0.0 0.5 0.5 # FCC primitive vectors (to be scaled by acell) 0.5 0.0 0.5 0.5 0.5 0.0 #Definition of the atom types ntypat 1 # There is only one type of atom znucl 13 # The keyword "znucl" refers to the atomic number of the # possible type(s) of atom. The pseudopotential(s) # mentioned in the "files" file must correspond # to the type(s) of atom. Here, the only type is Aluminum pp_dirpath "$ABI_PSPDIR" # This is the path to the directory were # pseudopotentials for tests are stored pseudos "Pseudodojo_nc_sr_04_pw_standard_psp8/Al.psp8" # Name and location of the pseudopotential #Definition of the atoms natom 1 # There is only one atom per cell typat 1 # This atom is of type 1, that is, Aluminum xred # This keyword indicate that the location of the atoms # will follow, one triplet of number for each atom 0.0 0.0 0.0 # Triplet giving the REDUCED coordinate of atom 1. #Definition of the planewave basis set ecut 6.0 # Maximal kinetic energy cut-off, in Hartree #Definition of the k-point grids nshiftk 4 shiftk 0.5 0.5 0.5 # These shifts will be the same for all grids 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5 ngkpt1? 2 2 2 ngkpt2? 4 4 4 ngkpt3? 6 6 6 #Definition of the SCF procedure nstep 10 # Maximal number of SCF cycles toldfe 1.0d-6 # Will stop when, twice in a row, the difference # between two consecutive evaluations of total energy # differ by less than toldfe (in Hartree) # This value is way too large for most realistic studies of materials #Definition of occupation numbers occopt 4 tsmear?1 0.01 tsmear?2 0.02 tsmear?3 0.03 tsmear?4 0.04 #Optimization of the lattice parameters optcell 1 ionmov 2 ntime 10 dilatmx 1.05 ecutsm 0.5 ############################################################## # This section is used only for regression testing of ABINIT # ############################################################## #%% #%% [setup] #%% executable = abinit #%% [files] #%% files_to_test = #%% tbase4_3.abo, tolnlines= 0, tolabs= 2.116e-07, tolrel= 4.549e-03, fld_options = -easy #%% [paral_info] #%% max_nprocs = 4 #%% [extra_info] #%% authors = Unknown #%% keywords = #%% description = #%% Crystalline aluminum : computation of the total energy #%% #%% Convergence with respect to k points #%%